

Impact of Water Broadening on Atmospheric CO₂ Retrievals for the OCO-2 Mission

F. Oyafuso & Absco team*

* David R. Thompson⁽¹⁾, Linda L. Brown⁽¹⁾, David Crisp⁽¹⁾, Yibo Jiang⁽¹⁾, Keeyoon Sung⁽¹⁾, Charles Miller⁽¹⁾, Vivienne Payne⁽¹⁾, Chris Benner⁽²⁾, Malathy Devi⁽²⁾

(1) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109 (2) The College of William and Mary, Williamsburgh, VA, 23681

OCO-2 Spectroscopy

OCO precision requirements:

- Goal: 1 ppm (~0.3%)
- Necessitates extreme precision in spectroscopy

Spectroscopy Model:

3 bands: WCO₂ (1.6μm), SCO₂
 (2.06μm), O₂A (0.76μm)

OCO-2 Spectroscopy: Updates

	$0.76\mu m~O_2$	1.61μm CO ₂	2.06µm CO ₂	H_2O
Spectral range	12745-13245 cm ⁻¹	4700-6500cm ⁻¹	4700-6500cm ⁻¹	12745-13245 cm ⁻¹ 4700-6500cm ⁻¹
Spectral resolution	0.01cm ⁻¹ or 0.002cm ⁻¹	0.01 cm ⁻¹ or 0.002cm ⁻¹	0.01 cm ⁻¹ or 0.002cm ⁻¹	0.01 cm ⁻¹ or 0.002cm ⁻¹
Position	Long (2010), Long (2011)	Devi (2007) ¹	Benner/Devi (2011) ¹	Gordon (2012), Rothman (2010)
Intensities	"	"	"	"
Air-widths	Tran (2008)	Predoi-Cross (2009) ¹	44	"
Air-shifts	Brown (2009) Robichaud (2008a) Predoi-Cross (2008)	Devi (2007b) ¹	"	"
Temp. dep.	Brown (2000) ^{1,2}	Predoi-Cross (2009) ¹	66	"
Line shapes	Voigt / Galatry	Speed-dependent Voigt	Speed-dependent Voigt	Voigt
Isotopologue abundance	Rothman (2009) ¹	Rothman (2009)	Rothman (2009)*	Rothman (2009)
H ₂ O broadening	Vess (2012)/Fanjoux (2012)	Sung (2009)	Sung (2009)	-
Air-Line mixing	Tran (2008)	"	Benner/Devi (2011)	-
"Temp. dep.	Tran (2008)	-	-	-
Speed dep.		Devi (2007) ¹	Benner/Devi (2011) ¹	-
Continuum	CIA via Tran (2008)	-	Mlawer (2011) *	Mlawer (2011) *

Why worry about H₂O?

- Water vapor varies greatly both spatially and temporally.
- Spectroscopic errors associated with water vapor can potentially introduce unphysical biases in retrieved X_{CO2}.
- Effect of water on spectroscopy:
 - Direct absorption
 - Enhanced broadening of CO₂ and O₂.

* H. Schrijver et al., *Atmos. Meas. Tech.*, **2**, 561 (2009)

CO₂-H₂O broadening

- Two recent publications:
 - Sung @ 4.3μm
 - Wallace @ 1.6µm (3 lines)

- Weak dependence on vibrational quantum number extends applicability to WCO₂ and SCO₂ bands.
- Use a rational function fit to measured water-broadened CO₂ lines, γ_{CO2←H2O}(J").*

$$\gamma = \gamma_{air} + (\gamma_{self} - \gamma_{air}) x_{CO2}$$

 Water turns out to be a much more effective broadener for CO₂ than air (~1.8x).

^{*} K Sung, L. Brown, RA Toth, TJ Crawford, Can J. Phys, 87, 469-484 (2009)

O₂-H₂O broadening: two models

- Until recently, there had been only one publication on H₂O broadening of O₂ (Fanjoux et al, *J. Phys Chem*, **101**, 1061 (1994)). BUT measurements were at high temps 446<T<990K.
- This year another result has been published showing a much greater difference from air (Vess et al, *J. Phys Chem*, **116**, 4069 (2012)), but only six transitions were measured.
- Enhancements differ considerably: ~8% (Fanjoux), ~80% (Vess)

Effect on single band retrievals

Previously:

- WCO₂ and low optical thicknesses → core reduction increases retrieved X_{CO2}.
- SCO₂ → lines are too saturated for cores to matter, enhance of wings *decreases* retrieved X_{CO2}.
- Addition of water continuum in SCO2 changes things.
- WCO2, SCO2 now largely cancel.

H₂O-CO₂: residuals

 Residuals are not improved for single band XCO2 retrievals – they worsen slightly.

TCCON-coincident GOSAT: XCO₂

- 3 band retrieval complicates analysis:
 - Previous slides show WCO₂, SCO₂ may cancel.
 - Fanjoux O₂-H₂O broadening enhancement is small → little dependence on H2O column
 - If 1.8x approximation (Vess) is valid, XCO₂ spectroscopic error can exceed 1ppm.

TCCON-coincident GOSAT: Psurf

- Apart from isotopic abundances, no additional scaling used:
 - Retrieved surface pressure agrees well with ECMWF:
 - 1.8x enhancement of dry air broadening reduces bias in retrieved surface pressure.
 - However, ~2.5ppm bias exists in XCO2
 - Dependence on water column: -0.09 ppm/(g/cm²) → +0.22 ppm/(g/cm²)

Summary

- Capability of modeling water dependent cross sections has been included in the L2 algorithm for OCO-2
- Characterization of H2O-broadened O2 is very uncertain, ...
- ... but, if not accounted for, could introduce spatial or temporal biases exceeding the OCO-2 error budget.
- Further lab measurement may be needed to settle the issue.

Acknowledgements

Research described in this talk was performed at Jet Propulsion Laboratory, California Institute of Technology, and was supported by the OCO-2 mission under the National Aeronautics and Space Administration.

Copyright 2012. All rights reserved.